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ABSTRACT

This paper presents a reduced reference video quality met-

ric that exploits contrast and motion sensitivity characteristics

of the HVS to perform a spatio-temporal selection of refer-

ence data. Spatio-temporal selection is realised through map-

ping of wavelet subbands to contrast sensitivity and through

motion analysis. The proposed method is integrated with

a modified SSIM-based framework to produce STIS-SSIM,

a very low complexity reduced reference metric. The met-

ric is shown to offer significant performance improvement

over many existing full reference and reduced reference video

quality metrics when tested on the LIVE video database.

Index Terms— Video quality assessment, reduced refer-

ence, spatio-temporal information selection

1. INTRODUCTION

Video quality assessment (VQA) is a research area of signif-

icant interest to the video compression community [1], as it

forms the basis of rate-quality optimisation algorithms, qual-

ity of service (QoS) evaluation and codec performance assess-

ment. VQA methods are generally classified into subjective

and objective approaches. The latter are further categorised as

full-reference (FR), reduced-reference (RR) or no-reference

(NR) depending on the availability or otherwise of full or par-

tial reference data during the assessment process [2].

Popular FR metrics include peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM) [3], both of which

have been widely employed in various applications. More

recent FR metrics include the visual signal-to-noise ratio

(VSNR) [4], video quality model (VQM) [5], motion tuned

spatial-temporal quality assessment method (MOVIE) [6],

spatio-temporal most-apparent-distortion (STMAD) [7] and

perception-based video quality metric (PVM) [8].

RR metrics are utilised in those cases where only par-

tial reference data can be used, for example when assessing

video quality at the receiving end of a wireless channel. Var-

ious spatial and temporal features are commonly extracted to

form the reduced reference information [9–11]. RR quality

metrics are generally required to have low complexity whilst

maintaining a reasonable correlation with subjective opinion

scores. One of the most recent RR video quality assessment

methods is the STRRED method [12] which employs spatio-

temporal entropic differences for performing the quality as-

sessment.

In this paper we present STIS-SSIM, a reduced reference

video quality metric that applies adaptive spatio-temporal in-

formation selection (STIS) for forming the reduced reference

data. STIS selects reference data for a segment of an image

sequence by analysing the energy in the medium frequency

bands of the wavelet-transformed frame(s) of that segment

of the sequence. STIS also takes into account frame differ-

ences for ranking the reference data. The selection method

is efficiently combined with a modified SSIM metric to form

STIS-SSIM. We tested the performance of the proposed RR

metric on the LIVE video database where it was found to offer

significant improvement in correlation with subjective scores

relative to other RR metrics. The computational complexity

of the proposed metric was found to be lower compared to

that of seven other tested quality metrics.

The rest of the paper is organised as follows. Section 2

describes the proposed quality metric (STIS-SSIM) in detail.

In Section 3 the performance of STIS-SSIM is presented in-

cluding correlation analysis, complexity and significance test.

Finally, conclusions are given in Section 4 alongside sugges-

tions for future work.

2. PROPOSED ALGORITHM

The proposed method exploits two properties of the human

visual system (HVS) for characterising and ranking reference

data. The first property is the high contrast sensitivity dis-

played by the HVS to medium spatial frequencies, as ex-

pressed by the contrast sensitivity function (CSF) [13]. The

second property is the high visual attention sensitivity that the

HVS shows to motion.

STIS adaptively selects reference data according to their

ranking and the desired amount of side information. The lat-

ter is expressed as a percentage of the full reference data. The

side information consists of the selected reference scalars and

corresponding pixel block position coordinates. At the de-

coder, the position coordinates are used for selecting decoded
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Fig. 1: Block diagram of the proposed reduced reference quality metric.

pixel blocks. These are then compared to the selected refer-

ence scalars using a modified SSIM metric. A block diagram

describing the STIS-SSIM framework is given in Figure 1.

Below we describe the proposed method in detail.

2.1. Spatial Selection

STIS performs spatio-temporal selection of reference data for

a given segment of a video. A segment can range from a few

frames to the whole sequence. Each frame in the segment is

transformed into different frequency bands using the Discrete

Wavelet Transform (DWT) with two levels of decomposition.

For a known viewing distance d, the relationship between

the CSF and the wavelet subbands is characterised by the fol-

lowing expression [14, 15] :

fmax,w =
wi

4× arctan( w
2×d

)
, (1)

fmax,h =
hi

4× arctan( h
2×d

)
. (2)

Here w and h are the width and height of the display, and wi

and hi are the horizontal and vertical spatial resolution of the

video. fmax,w and fmax,h represent the highest spatial fre-

quencies (in cycles per degree) that can be rendered in the

horizontal and vertical directions given a particular viewing

configuration (display size, video resolution and viewing dis-

tance). Given equations (1) and (2), the CSF function can

be mapped to the DWT subbands using the experimental re-

sults of [16], with fmax,w and fmax,h corresponding to the

first level subbands. Fig. 2 shows this mapping for a two-

level DWT decomposition using the viewing configuration

employed in the LIVE database subjective tests. The dashed

lines indicate the subbands of interest1.

To select the reference information each frame is firstly

segmented into blocks of identical size. Each block is then

characterised and ranked by the energy of the wavelet coefi-

cients in the subbands of interest that correspond to that block

of pixels. More specifically for each block n we find the sub-

band coordinates (i, j) in level m of the decomposition that

1It should be noted that, due to the limited spatial resolution of videos in

the LIVE database, the number of DWT decomposition levels is such that the

selected subbands do not correspond perfectly to the peak region of the CSF.
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Fig. 2: Mapping of the CSF curve onto DWT subbands based on the viewing

configuration used in the LIVE video database.

correspond to that block and calculate the energy of the coef-

ficients at each of these coordinates (i, j) in subbands LHm,

HLm and HHm. We rank blocks according to the maximum

of these energies E(n):

E(n) = max
i,j

(|BLHm
(i, j)|+ |BHHm

(i, j)|+ |BHLm
(i, j)|). (3)

Reference blocks with a higher E(n) value are ranked higher.

We have found that applying a mean filter with a 4 × 4 win-

dow to all the DWT subband coefficients in (3) prior to the

calculation of E(n) improves the performance.

2.2. Spatio-Temporal Selection

Temporal characterisation of pixel blocks is based on simple

frame differences. More specifically we calculate:

FD(t) =
∑

x,y

(|It(x, y)− It−1(x, y)|+ |It(x, y)− It+1(x, y)|),

(4)

where FD(t) is the frame difference for current frame t and

It(x, y) is the luminance value for pixel coordinate (x, y) in

frame t.

Spatio-temporal ranking and selection of blocks is then

performed according to the spatio-temporal information value

of each block, calculated as shown in (5).

STI(n, t) =
E(n, t)

Emax(t)
×

FD(t)

FDmax

. (5)

STI(n, t) is the spatio-temporal information value of block n
within frame t. Emax(t) and FDmax are maxima, calculated

as shown in (6).

{

Emax(t) = max
n

{E(n, t)}

FDmax = max
t

{FD(t)}
. (6)

The spatio-temporal selection method is described in de-

tail in Algorithm 1.
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Algorithm 1 Spatio-temporal selection algorithm.

Input:

Target number of reference scalars: Smax;

Spatio-temporal information value of each block: STI(n, t);
Number of scalars representing each block: Sblock;

Number of blocks in frame: N ;

Number of frames in sequence: M .

Output:

Selected blocks with their positions:

block 1 at (n̂1, t̂1), block 2 at (n̂2, t̂2), · · · , block l at (n̂l, t̂l), · · · .

1: Calculate target number of blocks Bmax = Smax

Sblock

;

2: Calculate selection ratio r = Bmax

N·M
;

3: Divide sequence into K = M · √r segments, each of which contains
M
K

consecutive frames;

4: Calculate target block numbers for each segment:

Bmax,s = Bmax

K
, k = 1, · · · ,K;

5: Rank {STI(n, t)} for all blocks in descending order and place all blocks

in a selection pool;

6: Set the number of selected blocks Bsel = 0;

7: Set the number of selected blocks in each segment Bsel,k = 0, k =
1, · · · ,K;

8: while Bsel < Bmax do

9: Select the block (assume within segment k) with the maximum STI
in the selection pool: (n̂i, t̂i);

10: Bsel = Bsel + 1;

11: Bsel,k = Bsel,k + 1;

12: Remove all the blocks at the same position in 10 neighbouring frames

(5 frames before frame t and 5 frames after, if applicable);

13: if Bsel,k ≥ Bmax,s then

14: Remove all the blocks within segment K from the selection pool;

15: end if

16: end while

2.3. Integration with SSIM

The proposed spatio-temporal selection method is integrated

with a SSIM quality metric [3]. To reduce the size of the side

information (the amount of reference data used) we do not

include the pixel values of the selected blocks in the reduced

reference data, but instead we use the corresponding DC coef-

ficients at level m of the DWT decomposition. The luminance

values obtained from the inverse DWT of these reference co-

efficients are compared with the luminance values obtained

by the inverse DWT of the corresponding DC coefficients of

the reconstructed (distorted) frames. This reduces the size of

the side information to around 6% of the original reference

pixels when m equals 2.

In an effort to further reduce the amount of reference data

used by STIS-SSIM we observe that in the original SSIM al-

gorithm a Gaussian filter with a window size of 11 is applied

to both reference and test frames, before quality indices are

calculated. This leads to high correlation between the cen-

tral pixels in each test block and their neighbouring pixels.

Based on this observation, we only include the central DC

coefficients of the selected blocks in the reference data. We

calculate the SSIM index using the equation below:

SSIM(l) =
(2µo(l)µd(l) + C1)(2σo,d(l) + C2)

(µ2
o(l) + µ2

d(l) + C1)(σ2
o(l) + σ2

d(l) + C2)
. (7)

µo(l) and µd(l) represent the average luminance values ob-

tained from the central DC coefficients of reference and dis-

torted block l at position (n̂l, t̂l). σ
2

o(l) and σ2

d(l) are the vari-

ance of these blocks. C1 and C2 are two parameters used for

stabilising the division with weak denominators. SSIM in-

dices from all selected blocks are averaged to give the final

sequence-level quality index as follows:

STIS-SSIM =

Bmax
∑

l=1

SSIM(l)

Bmax

. (8)

3. RESULTS AND DISCUSSION

The performance of STIS-SSIM was evaluated using the

LIVE video database [17]. The database contains 150

distorted videos from 10 references with a resolution of

768 × 432@25/50p. Distortion types include compression

artefacts generated by MPEG-2 and H.264 and transmission

errors over simulated IP or wireless networks. A two level

DWT decomposition was applied as shown in Fig.2 . Video

frames were segmented into 64×64 blocks. These correspond

to 16 × 16 blocks of wavelet coefficients at the second level

of the DWT decomposition. The central 4 × 4 coefficients

of these blocks from the DC band were used as reference

scalars. The performance and complexity of the proposed

metric was compared with that of eight existing objective

quality assessment methods. These are PSNR, SSIM [3],

VSNR [4], VQM [5], MOVIE [6], PVM [8], STMAD [7] and

STRRED [12]. The performance analysis rules described in

[8, 17, 18] were followed for the assessment, with a weighted

least squares approach being used to minimise the error of

a logistic fitting function of subjective DMOS and objective

quality values.

Table 1 and Table 2 show the correlation performance of

the proposed method using different amounts of reference

scalars. P represents the number of pixels in the original

video frames and P ′ = P/256 stands for the number of refer-

ence scalars used if the central DC wavelet coefficients of all

pixel blocks are selected as reference.

Table 1: Spatial selection results.

Scalar No. P ′ 0.5P ′ 0.4P ′ 0.3P ′ 0.2P ′

SROCC 0.7021 0.7384 0.7650 0.7852 0.7999

Scalar No. 0.1P ′ 0.05P ′ 0.02P ′ 0.01P ′

SROCC 0.8033 0.7895 0.7810 0.7936

Table 2: Spatio-temporal selection results.

Scalar No. 0.02P ′ 0.01P ′ 0.006P ′

SROCC 0.8138 0.8154 0.8092

Scalar No. 0.003P ′ 0.001P ′ 0.0008P ′

SROCC 0.7853 0.7600 0.7434
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Table 3: F-test results for the tested video metrics at 95% confidence level.

Metric PSNR SSIM VSNR VQM MOVIE PVM STMAD STIS-SSIM (best)

PSNR - 0 0 -1 -1 -1 -1 -1

SSIM 0 - 0 -1 -1 -1 -1 -1

VSNR 0 0 - 0 -1 -1 -1 -1

VQM 1 1 0 - 0 0 0 0

MOVIE 1 1 1 0 - 0 0 0

PVM 1 1 1 0 0 - 0 0

STMAD 1 1 1 0 0 0 - 0

STIS-SSIM (best) 1 1 1 0 0 0 0 -

Table 1 shows results when only spatial selection is ap-

plied, with an equal amount of information from every frame

being included in the reference data. It is interesting to note

that for the case of spatial selection SROCC (Spearman’s

rank correlation coefficient) performance increases when less

information is used as reference (the best result appears for

the case of 0.1P ′ which corresponds to around 0.04% of

information). Spatio-temporal selection (STIS-SSIM) im-

proves the performance as shown in Table 2 and reduces

further the amount of reference information needed. The

best SROCC value with STIS-SSIM (0.8154) is obtained at

0.01P ′ (0.004% of reference information), which is defined

as STIS-SSIM (best) for further comparison.

Table 4: Performance of all tested FR and RR metrics on the LIVE database.

Metric SROCC LCC RMSE Complexity

PSNR 0.5398 0.5613 9.1100 1

SSIM 0.5252 0.5414 9.2876 13

VSNR 0.6881 0.6726 8.0683 65

VQM 0.7748 0.7583 6.6931 681

MOVIE 0.7890 0.8112 6.4439 2206

PVM 0.8045 0.8160 6.3723 632

STMAD 0.8204 0.8245 6.2433 808

STRRED (best) 0.8056 n/a n/a 97

STIS-SSIM (best) 0.8154 0.8290 6.1674 9

Table 4 presents a summary of the performance results

obtained with all tested FR and RR quality metrics using the

LIVE database. Performance results are presented in terms

of the Linear Correlation Coefficient (LCC), SROCC, and the

Root Mean Squared Error (RMSE). It can be seen that STIS-

SSIM achieves the best performance of all tested metrics in

terms of LCC and RMSE, and the second best in terms of

SROCC. A more detailed performance comparison with RR

metric STRRED [12] is given in Fig. 3. The graph shown

compares SROCC results versus the amount of reference in-

formation used by each RR metric. It can be seen that the

proposed metric outperforms STRRED.

Table 3 shows the results of a significance test that we

conducted for all tested metrics. More specifically we per-

formed an F-test (we followed the rule in [8, 17]) on the resid-

ual between the average DMOS of the LIVE subjective as-

sessment and the predicted DMOS given by the tested objec-

tive quality metrics. Each value in Table 3 indicates the sig-

nificance of the difference in performance between the quality
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Fig. 3: STIS-SSIM vs STRRED.

metrics stated in the top row and left most column of the table

at the 95% confidence level. A “1” suggests that the metric in

the row is superior to that in the column, a “-1” suggests the

opposite. A “0” indicates that there is no significant differ-

ence between the performance of the two metrics. According

to the results of Table 3, MOVIE, PVM, STMAD and STIS-

SSIM (best) are statistically equivalent, and they all outper-

form PSNR, SSIM and VSNR.

Finally, for most application scenarios of RR metrics, it is

also important to analyse the computation complexity of the

metric. Table 4 gives a summary of the relative complexity

of all the tested quality metrics. Complexity was measured

as the average execution time on an Intel Core i7-2600 CPU

@3.40GHz PC, and is normalised relative to the execution

time of PSNR. The complexity of the reduced reference met-

rics was calculated for the level of reference that offered the

best performance. All test metrics were realised in Matlab

except MOVIE (realised in C). It can be observed that the

proposed method is less complex than most test metrics.

4. CONCLUSIONS

In this paper we presented STIS-SSIM, a novel reduced refer-

ence video quality metric that exploits the contrast and motion

sensitivity characteristics of the HVS for reducing the amount

of reference information needed and for producing good re-

sults. The proposed method has low computational complex-

ity and provides superior performance to most existing full

reference and reduced reference quality metrics when tested

on the LIVE database. Future work will focus on integrating

the selection part of the metric (STIS) with more advanced

perception-based video quality metrics.
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